Engineer's Book

————— PHYSICS – SPACE – ALGORITHMICS ——-

From Maximal Entropy Method to Bayesian Inference in Neurosciences – MATLAB Simulation

Written By: Jean-Paul Cipria - Juin• 11•16

FROM MAXIMAL ENTROPY METHOD TO BAYESIAN INFERENCE IN NEUROSCIENCES – MATLAB SIMULATION – (Extracts) – 2016

Abstract : This Matlab study shows how to link two physics concepts : Information Entropy and Bayesian Inference. The entropy is used by physicists to view the « most probable » best informations brain pictures therefore Bayesian Inference is a statistic method to generalyze a data set to the « most probable » concept by the brain. The first part shows how to use maximal entropy method to find missing informations on the choosen transformation display. A second part displays some MEM pictures. The last part discuses about a statistical methods issued by stationary principle law on the neurosciences.

Keys : Maximum Entropy Method, MEM, Bayesian Inference.

References

 

You can follow any responses to this entry through the RSS 2.0 feed. You can skip to the end and leave a response. Pinging is currently not allowed.

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Anti-Spam Quiz: